
Sec 14.7: Maximum and Minimum Values

DEF. Let z = f(x, y) be defined on a region planar R. Suppose (a, b) ∈ R. Then:
1. f(a, b) is a local minimum value of f if f(x, y) ≥ f(a, b) for all points (x, y) in an open disk
centered at (a, b).

2. f(a, b) is a local maximum value of f if f(x, y) ≤ f(a, b) for all points (x, y) in an open disk
centered at (a, b).

Theorem. If z = f(x, y) has a local max(or local min) at the point (a, b), and both partial
derivatives at the point (a, b) exist, then

fx(a, b) = 0 and fy(a, b) = 0.

Critical Point. Is an interior point (a, b) in the domain of the function where either
fx(a, b) = 0

fy(a, b) = 0

or where one or both fx(a, b) and fy(a, b) do not exist.

Saddle Point

Let f(x, y) = y2 − x2. Since fx = 2x and fy = 2y,
the only critical point is (0, 0). Notice that for points
on the x-axis we have y = 0, so f(x, y) = −x2 < 0
(if x ̸= 0). However, for points on the y-axis we have
x = 0, so f(x, y) = y2 > 0 (if y ̸= 0). Thus every
disk with center (0, 0) contains points where f takes
positive values as well as points where f takes negative
values. Therefore, f(0, 0) = 0 cannot be a local max
nor local min.This motivates the following definition.

A function f(x, y) has a saddle point at a critical point (a, b) if in every open disk centered
at (a, b) there are domain points (x, y) where f(x, y) > f(a, b) and domain points (x, y) where
f(x, y) < f(a, b).
In this case, the graph of z = f(x, y), nearby the saddle point looks like a Pringle’s potato chip.
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Ex1. Find all critical points of P (x, y) = x3 − 12xy + 8y3.

2nd Derivative Test. Suppose f(x, y) and its first and second partial derivatives are continuous
throughout a disk centered at (a, b) and that fx(a, b) = fy(a, b) = 0. Let D be the quantity defined
by

D := fxx(a, b) · fyy(a, b)−
[
fxy(a, b)

]2
Then, we have the following.

1) If D > 0 and fxx(a, b) > 0, f has a local min. at (a, b).

2) If D > 0 and fxx(a, b) < 0, f has a local max. at (a, b).

3) If D < 0, f has a saddle point at (a, b).

4) If D = 0, no conclusion can be drawn.

Ex2. Find and classify the critical point(s) of the function P (x, y) = x3 − 12xy + 8y3.
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Exercises.
(1) Find and classify all critical points of the function g(x, y) = x2y + 4xy + 4y2.
(2) Find all critical points of Q(x, y) = (x2 + y2) exp(y2 − x2).

Sec 14.7 Absolute Maxima and Minima on closed, bounded regions.

Absolute Maximum and Minimum Values:

Let (a, b) be a point in the domain D of a function f of two variables. Then f(a, b) is the

• absolute maximum value of f on D if f(a, b) ≥ f(x, y) for all (x, y) in D.

• absolute minimum value of f on D if f(a, b) ≤ f(x, y) for all (x, y) in D.

Closed and Bounded Regions:

• A closed region in R2 is a set that contains all its boundary points.

• A bounded region in R2 is a set that is contained within some disk.
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Thm: Extreme Value Theorem Let z = f(x, y) be a continuous function over the region R in
R2. If R is closed and bounded, then f attains an absolute maximum and an absolute minimum
over the region R.

Algorithm: To find the absolute maximum and minimum values of a continuous function on a
closed, bounded region R, do the following steps:

Step 1 : List the interior critical points and evaluate f at these points.

Step 2 : List the boundary points where f may have local maxima and minima and evaluate f at
these points.

Step 3 : The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest
of these values is the absolute minimum value.
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Ex3. Find the absolute maximum and the absolute minimum values of the function

f(x, y) = 2 + 2x+ 4y − x2 − y2

on the closed triangular region R with vertices (0, 0), (0, 9) and (9, 0).

Exercise.
Find the absolute maximum value and absolute minimum value of f(x, y) = xy − x − 2y on the
region D = {(x, y) ∈ R2 : 0 ≤ x ≤ 3, |y − 2| ≤ 2}.
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Sec 14.8: Lagrange Multipliers

Suppose f(x, y) and g(x, y) are differentiable functions. Let C be the level curve defined by the
equation g(x, y) = k. If P0 = (a, b) is a point on the curve C for which f(P0) is the absolute
maximum (or minimum) of f(x, y) along the curve C, then ∇f(P0) and ∇g(P0) must be parallel;
that is

∇f(P0) = λ∇g(P0)

for some real number λ.

Method of Lagrange Multipliers (2 variables)[This method assumes that the extreme values
exist and ∇g ̸= 0 on the curve g(x, y) = k]. To find the maximum and minimum values of f(x, y)
subject to the constraint g(x, y) = k we do the following:

(a) Find all values of x, y and λ such that{
∇f(x, y) = λ∇g(x, y)

g(x, y) = k

(b) Evaluate f at all points (x, y) that result from step (a). The largest of these values is the
maximum value of f ; the smallest is the minimum value of f .
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Ex1. What are the extreme values of the function f(x, y) = x2 + 2y2 on the circle x2 + y2 = 1?
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Ex2. Use Lagrange multipliers to find the maximum and minimum values of the function

f(x, y) = x2 + x+ 2y2

over the planar region x2 + y2 ≤ 1.
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Method of Lagrange Multipliers (3 variables). To find the maximum and minimum values
of f(x, y, z) subject to the constraint g(x, y, z) = k:

(a) Find all values of x, y, z, and λ such that{
∇f(x, y, z) = λ∇g(x, y, z)

g(x, y, z) = k

(b) Evaluate f at all points (x, y, z) that result from step (a). The largest of these values is the
maximum value of f ; the smallest is the minimum value of f .

Ex3. Find the point(s) on the sphere x2 + y2 + z2 = 4 that are closest to the point (3, 1,−1).
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Exercise. A rectangular box without a lid is to be made from 12 m2 of cardboard. Find the
maximum volume of such a box.

Lagrange Multipliers with two constraints

Suppose now that we want to find the maximum and minimum values of f(x, y, z) subject to the
constraints g(x, y, z) = k and h(x, y, z) = c. In this case we need to find all values of x, y, z, λ and
µ such that

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)

g(x, y, z) = k

h(x, y, z) = c

Ex4. The plane x+y+2z = 12 intersects the paraboloid z = x2+y2 in an ellipse. Use Lagrange
multipliers with two constraints to find the points on the ellipse that are nearest to and farthest
from the origin.
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Exercise. Find the maximum value of the function f(x, y, z) = x+ 2y + 3z on the curve of inter-
section of the plane x− y + z = 1 and the cylinder x2 + y2 = 1.

Ex5. Sketch the curve
x2

16
+

y2

4
= 1 on the figure below.

Note: circles represent some level curves of the function f(x, y) = x2 + y2.

x

y

1

4

9
16

25
36

We want to identify the absolute maximum value and the absolute minimum value of the function

f(x, y) = x2 + y2 subject to the contraint
x2

16
+

y2

4
= 1.

Use the picture to complete the following:

• The candidates (a, b) for the location of absolute extrema using the method of Lagrange
Multipliers are:

• The absolute maximun value is:

• The absolute minimun value is:
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